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Abstract. This study focuses on the non-linear effect of gas hourly space velocity (GHSV), 

oxygen (O2) concentration in the feed, the reaction temperature, and the CH4/CO2 ratio on 

hydrogen production by catalytic methane dry reforming using artificial neural networks 

(ANN). Ten different ANN models were configured by varying the hidden neurons from 1 to 

10. The various ANN model architecture was tested using 30 datasets. The ANN model with 

the topology of 4-9-2 resulted in the best performance with the sum of square error (SSE) of 

0.076 and coefficient of determination (R2) greater than 0.9. The predicted hydrogen yield and 

the CH4 conversions by the optimized ANN model were in close agreement with the observed 

values obtained from the experimental runs. The level of importance analysis revealed that all 

the parameters significantly influenced the hydrogen yield and the CH4 conversion. However, 

the reaction temperature with the highest level of importance was adjudged the parameter with 

the highest level of influence on the methane dry reforming. The study demonstrated that ANN 

is a robust tool that can be employed to investigate predictive modeling and determine the level 

of importance of parameters on methane dry reforming. 

 

Keywords: Artificial Neural Network; Backpropagation; Methane dry reforming; Hydrogen 

yield; Greenhouse gases 

1. Introduction 

Carbon dioxide and methane are two prominent components of greenhouse gases that are responsible 

for the greenhouse effect [1]. These greenhouse gases can be sustainably utilized for the production of 

hydrogen or hydrogen-rich syngas [2–4]. The methane dry reforming has been reported as a potential 

technological pathway suitable to simultaneously utilize carbon dioxide and methane for hydrogen-

rich syngas production and mitigate their effects on the environment [5–9]. However, the methane dry 

reforming reaction is often characterized by complex chemical reaction pathways that are yet to be 

fully understood despite a series of kinetic and mechanistic studies that have been reported in the 

literature [10]. One major complexity is the non-linear effects of the various process parameters on 

hydrogen production [11–13].  

The artificial intelligent approach can be employed to decipher the effects of these non-linear 

parameters on hydrogen production during the reforming reaction [14,15]. The use of ANN for 

modeling various processes has been widely reported in the literature [16–18]. The use of artificial 
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neural networks for dynamic modeling of dry reformers under catalyst sintering has been reported by 

Azzam et al. [19]. The results revealed that industrial suitable catalysts can be achieved via the 

optimization of pressure and temperature. Similarly, Ghasemzadeh et al. [20] employed ANN for 

modeling the performance of the silica-based membrane reactor during methanol steam reforming. 

The influence of gas hourly space velocity (GHSV), reaction temperature, membrane pressure, and 

steam/methanol molar ratio on the methanol conversion was investigated. The results revealed that the 

ANN model accurately predicted the methanol conversion with the reaction temperature having the 

most significant influence. In a similar study by Ghasemzadeh et al. [21], it was reported that the ANN 

model was robust in predicting hydrogen production from glycerol steam reforming by a Pd-Ag 

membrane reactor.  The present study employed Artificial Neural Network (ANN) algorithms to 

investigate the effects of Gas Hourly Space Velocity (GHSV), O2 concentration in the feed, reaction 

temperature, and the CO2 to CH4 ratio. Several ANN model architectures were configured. This will 

help to properly understand the effects of these parameters on hydrogen production. Thirty datasets 

generated using the design of the experiment were obtained from methane dry reforming reaction 

using the bimetallic Ni-Co catalyst. These datasets consist of the input parameters (Gas Hourly Space 

Velocity (GHSV), O2 concentration in the feed, reaction temperature, and CO2 to CH4 ratio) and their 

corresponding responses (Hydrogen and methane conversion) were employed for training, testing and 

validating the ANN models. The hidden neuron of the Several models of the ANN were optimized 

using backpropagation algorithm. The representative structure of the ANN model architecture is 

depicted in Figure 1. It consists of the input layer, the hidden layer, and the output layer.  

 

2. Material and Methods 

 

2.1 Data Description 

The datasets used in this study for the ANN modeling was obtained using a central composite 

experimental design (CCD). The variable consists of GHSV, O2 concentration in the feed, reaction 

temperature, and the CO2 to CH4 ratio. Based on the CCD, 30 datasets comprise of the variables were 

employed to obtain the responses which include the hydrogen yield and CH4 conversion. The detailed 

description of the experimental runs has been reported by Fan et al.[22].  

 

2.2 ANN Model Configuration and Analysis 

A multilayer perceptron artificial neural networks with backpropagation configuration were employed 

in this study [11,23]. The configuration, which is depicted in Figure 1, consists of an input layer, the 

hidden layer, and the output layer. The input layer consists of the input variables which are made of 

GHSV, O2 concentration in the feed, reaction temperature, and the CO2 to CH4 ratio. The hidden 

layers are made of interconnected artificial neurons with associated weights. For the efficient 

performance of the neural networks, the hidden neurons need to be optimized. The output layer 

consists of the responses from the experimentation and these consist of hydrogen yield and the CH4 

conversion. In this study, 10 ANN models were configured by varying the hidden neurons. The 

datasets were employed to train the various models to determine the configuration with the best 

performance. The datasets were partition into two for training and testing at a ratio of 0.7 and 0.3 

respectively. The model performance was measured using the sum of square error (SSE) and the 

coefficient of determination (R2). The modeling was performed using the Neural Network analysis 

tools in IBM-SPSS version 22. To set up each the ANN model, the Sigmoid function was employed 

for the hidden layer and the output layers. A 0.02 normalized correction for employed for the rescaling 

of the scale-dependent variable.  
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Figure 1. ANN architecture to investigate the effect of process parameters on hydrogen production 

 

 

3. Results and Discussion 

Figure 2 depicts the optimization of hidden neurons for ten ANN model architectures. The hidden 

neurons were varied from 1 to 20 and the errors from training each of the models were recorded in 

form of SSE. It can be seen that the SSE varies as the hidden neuron of each of the ANN model varies. 

The ANN model configuration of 4-9-2 recorded the least SSE of 0.076, hence was subsequently 

employed for modeling. The model performance as a function of the dispersion and regression plots 

are depicted in Figure 3. As shown in Figure 3 (a), the observed hydrogen yield for each of the 

experimental runs is in close agreement with the ANN predicted values. This can further be confirmed 

from the regression plot in Figure 3 (b) which shows a strong correlation between the observed and the 

predicted hydrogen yield as indicated by the high R2 of 0.947. Similarly, the dispersion plots in Figure 

3 (c) also show that the observed values of the CH4 conversion for each of the experimental runs are 

consistent with the ANN model predicted values. A high R2 of 0.960 obtained from the regression plot 

in Figure 3 (d) is a strong indication the ANN model is robust in predicting CH4 conversions from the 

reforming process. The robustness of employing ANN as a predicting modeling tool has been reported 

by Hossain et al. [24]. Considering the effect of three different parameters namely feed ratio, reaction 

temperature, and metal loading, the authors reported that ANN accurately predicted CH4 conversion, 

CO2 conversion, H2, and CO yield with a high R2 value > 0.9. Also, Ayodele et al. [14] reported that 

an optimized ANN model efficiently predicted the rate of CO and H2 production from methane dry 

reforming using reaction temperature, CH4 partial pressure, and CO2 partial pressure as the input 

variables. The use of ANN for the design of Co-MgO catalyst was reported by Omata et al. [25]. 

Using parameters such as Co contents, calcination temperature, citric acid equivalent, and the pellet 

pressure, the ANN model was efficient in predicting the effects of the parameters on the CO yield and 

carbon deposition on the catalyst.  
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Figure 2. Optimization of the hidden neurons 

 

 
 

Figure 3. (a) Dispersion and (b) regression plots showing the observed and predicted hydrogen yield 

(c) Dispersion and (d) regression plots showing the observed and predicted CH4 conversion 

 

The level of importance of each of the parameters on the CH4 conversion and hydrogen yield is 

depicted in Figure 4. The effect of five parameters namely the gas hourly space velocity, O2 

concentration in the feed, reaction temperature, and the CH4: O2 ratio based on the level of importance 

(a) (b) 

(c) (d) 
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of the hydrogen yield and CH4 conversion were analyzed. The analysis shows that the five parameters 

had varying levels of significance on the hydrogen yield and CH4 conversion. The level of significance 

of the gas hourly space velocity, O2 concentration in the feed, reaction temperature, and the CH4: O2 

ratio was estimated as 0.259, 0.260, 0.338, and 0.142, respectively. This is an indication that the 

methane dry reforming reaction was influenced by the four parameters. However, the most significant 

parameter was the reaction temperature which is consistent with that reported by Ghasemzadel et al. 

[21] for ANN modeling of methanol steam reforming. Omoregbe et al. reported that reaction 

temperature and CH4/CO2 ratio had a significant effect on methane dry reforming reaction over 

Ni/SBA-15 catalysts. A maximum of CH4 and CO2 conversions of 91% and 94% were obtained 

respectively, at a reaction temperature of 750 oC. Also, Ricks et al. [26] reported that the CH4: CO2 

ratio and reaction temperature significantly influence the reactant conversions and the H2: CO ratio in 

methane dry reforming over perovskite catalyst. The details effects of the parameters on the hydrogen 

yield and CH4 conversion are summarized in Table 1. Both positive and negative influences were 

reported for each of the parameters as indicated by the negative and positive values of the synaptic 

weights of the parameters. It can be seen that the highest positive impact on the prediction of the 

hydrogen yield and CH4 conversion by the ANN model was obtained at GHSV, O2 concentration in 

the feed, temperature, and CH4/CO2 ratio of 200000 h-1,  12 mol%, 735oC, and 1, 

respectively[18,27,28]. This could help as a guide in determining what range of process parameters 

that could negatively or positively influence the performance of the catalysts in the methane dry 

reforming reaction.  

 

Table 1.  Parameter estimates for the level of importance analysis 

 

Predictor 

Predicted 

Hidden Layer 1 

1     2    3     4     5    6     7     8     9 

Input 

Layer 

(Bias) -0.464 -0.600 0.878 -0.452  0.473 -0.479 -1.285 -0.010 -0.290 

GHSV 

84000  0.367 -0.409 1.145 -0.059 -1.153  0.025 -1.309  1.091 -0.460 

113000  0.156  0.073 -0.343  0.051 -0.290 -0.144 -1.700 -0.019 -0.225 

142000 -0.836  0.123 -0.997 -0.247  1.167  0.099  1.100 -1.090  0.401 

171000 -0.624 -0.165  0.287  0.147  0.165 -0.149  0.843  0.543  0.011 

200000  0.842 -0.673  0.143  0.279 -0.202  0.087 -0.218 -0.416 -0.414 

O2 

Conc. 

in feed  

5 -1.738 -0.541  1.322 -0.966 -0.347 -0.282  0.875  0.155  0.667 

8 -0.246  0.787 -0.340 -0.634  0.479  0.608  1.181 -0.199  0.768 

10  0.974  0.303 -0.915  0.238 -0.054  0.075 -1.823 -0.150  0.289 

12  1.242 -0.698  1.362  1.061  0.363 -0.149 -1.295 -0.006 -1.047 

Temp. 700  1.598 -0.568  1.296  1.152  0.110 -0.166 -1.899  0.526 -0.976 

735  1.455 -0.359  1.335  0.156  0.261   0.221  0.996  0.031 -0.662 

750 -0.924  0.323 -1.283 -0.773 -0.266 -0.132  0.900 -0.509  1.085 

775 -2.477  0.026 -0.361 -1.028  0.203  0.768 -1.409  0.338  1.220 

CH4/ 

CO2 

ratio 

1 -0.650  0.186  0.237 -0.516 -0.185  0.509  0.527 -0.239  0.745 

  2 -0.179 -0.212 -0.310 -0.856  0.228 -0.235  0.054 -0.068  0.648 

  3  1.256 -0.065  0.772  0.591  0.282 -0.029 -0.963  0.257 -0.702 

  4 -0.875  0.153  0.225 -0.211 -0.716 -0.178 -1.140 -0.001 -0.427 

Output 

Layer  

CH4 

conversi

on 

  0.255  -2.706  0 .516  -2.371  -0.953  1.399  -0.047  3.136 -1.212 
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Figure 4. Level of importance analysis of each of the input parameters on the CH4 conversions and 

hydrogen yield. 

 

 

4. Conclusions 

This study has demonstrated the robustness of using artificial intelligence techniques to investigate the 

effect of process parameters on hydrogen production and CH4 conversion in methane dry reforming 

reaction. Ten ANN model architecture was configured and tested using datasets obtained from 

experimental studies. The best ANN configuration of 4-9-2 was subsequently employed for predictive 

modeling and parameter analysis. The model analysis revealed that the optimized ANN model 

accurately predicted the hydrogen yield and CH4 conversion by the methane dry reforming as 

indicated by the low sum of square error and high R2. Based on the level of importance analysis, the 

GHSV, O2 concentration in the feed, the reaction temperature, and the CH4/CO2 ratio have varying 

levels of influences on the methane dry reforming reaction. Reaction temperature with the level of 

importance of 0.338 has the most influence on the methane dry reforming reaction. The outcome of 

this study could help in guiding the optimum design of experiment for hydrogen production by 

methane dry reforming. 
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